
для всех

, следовательно, ряд сходится. Кстати, его сумма будет равна е-1 (где е - экспонента, основание натуральных логарифмов), потому что представление экспоненциальной функции в виде ряда Тейлора выглядит так:
Отсюда
Если из обеих частей равенства вычесть 1, то в левой части будет число е-1, а в правой части - Ваш ряд, следовательно, сумма ряда из Вашего задания равна e-1.
Ответ: ряд сходится, сумма ряда равна e-1.