Пусть второй трубе нужно х часов, чтобы заполнить бассейн.
Тогда первой нужно х+3 ( по условию).
Примем объем бассейна за единицу.
Производительность первой трубы будет
1:(х+3) части бассейна за один час.
Производительность второй
1:х соответственно.
Первая труба работала 9+7 часов ( 9 ч одна и ещё 7 ч совместно со второй)
и за 16 часов заполнила 16*1:(х+3) части бассейна.
Вторая за 7 часов заполнила 7*1:х части бассейна
Вместе они заполнили бассейн полностью.
Запишем уравнение:
16*1:(х+3)+7:х=1
приведем дроби к общему знаменателю х*(х+3) и умножим обе части уравнения на него, чтобы избавиться от дроби.
16х+7х+21=х²+3х
Приведя подобные члены уравнения, получим
х²-20х-21=0
Решим квадратное уравнение
D=b²-4ac=-202-4·1·-21=484
х₁=21
х₂=-1 и не подходит.
Вторая труба может заполнить бассейн за 21 час,
первая - за 21+3=24 часа.
Проверим:
Производительность первой трубы 1/24, второй 1/21
16/24+7/21=168/168=1
Работая в таком режиме, трубы заполнят бассейн полностью.