Помогите решить уравнение 1/3x+1/9x^2+6+1=2 /- дробная черта

0 голосов
33 просмотров

Помогите решить уравнение 1/3x+1/9x^2+6+1=2
/- дробная черта


Алгебра (136 баллов) | 33 просмотров
0

там точно +6+1 ? странно..почему сразу тогда не написать было +7 ?

0

точно

0

6x

Дан 1 ответ
0 голосов
Правильный ответ

1/3Х+1/9Х^2 + 6X=2
приводим дроби к общему знаменателю, общий знаменатель -число,которое делится на каждый знаменатель дроби в уравнении, это число 9. Делим 9 на знаменатель каждой дроби: 9:3=9, 9:9=1, 9:1=9, умножаем числители каждой дроби на полученное значение и складываем их. получаем:
(3Х+Х^2+54Х)/9 = 2
57Х + Х^2 = 18
Переносим число 18 в левую часть уравнения и приравниваем к нулю, получается стандартное квадратное уравнение типа ах^2 + bx + c = 0:
Х^2 + 57Х - 18 = 0
в нашем случае а=1, в=57, с= -18
для решения квадратных уравнений существуют специальные формулы.
для начала нужно вычислить дискриминант этого уравнения по формуле
 D = в^2 - 4ас, чтобы узнать, по какой схеме искать корни уравнения и сколько их может быть в данном уравнении:
D=57^2 - 4*1*(-18)=3249 + 72= 3321
по правилам, если дискриминант больше нуля, то уравнение имеет два корня, то есть два значения Х, и они вычисляются по формуле:
Х1,Х2 = (-B = + - КОРЕНЬ из (В^2 - 4ас)) / 2а
подставляем в эту формулу наши значения а,в,с:
Х1= (-57 + КОРЕНЬ из (57^2 -4*1*(-18))) / 2*1 
Х1= (-57+КОРЕНЬ из 3249+72) / 2
Х1= (-57+ 57,63) / 2
Х1 = 0,314
таким же образом подставив те же значения для Х2, только уже в числителе будет разница, а не сумма:
Х2= (-57-57,63) / 2 
Х2 = - 57,315


(646 баллов)